Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice.
نویسندگان
چکیده
Cpe(fat)/Cpe(fat) mice have a naturally occurring point mutation within the carboxypeptidase E gene that inactivates this enzyme, leading to an accumulation of many neuroendocrine peptides containing C-terminal basic residues. These processing intermediates can be readily purified on an anhydrotrypsin affinity resin. Using MS to obtain molecular mass and partial sequence information, more than 100 peptides have been identified. These peptides represent fragments of 16 known secretory pathway proteins, including proenkephalin, proopiomelanocortin, protachykinins A and B, chromogranin A and B, and secretogranin II. Many of the identified peptides represent previously uncharacterized fragments of the precursors. For example, 12 of the 13 chromogranin B-derived peptides found in the present study have not been previously reported. Of these 13 chromogranin B-derived peptides, only five contain consensus cleavage sites for prohormone convertases at both the C and N termini. Two distinct chromogranin B-derived peptides result from cleavage at Trp-Trp bonds, a site not typically associated with neuropeptide processing. An RIA was used to confirm that one of these peptides, designated WE-15, exists in wild-type mouse brain, thus validating the approach to identify peptides in Cpe(fat)/Cpe(fat) mice. These "orphan" peptides are candidate ligands for orphan G protein-coupled receptors. In addition, the general technique of using affinity chromatography to isolate endogenous substrates from a mutant organism lacking an enzyme should be applicable to a wide range of enzyme-substrate systems.
منابع مشابه
Obesity and diabetes in transgenic mice expressing proSAAS.
ProSAAS is a neuroendocrine peptide precursor that potently inhibits prohormone convertase 1 in vitro. To explore the function of proSAAS and its derived peptides, transgenic mice were created which express proSAAS using the beta-actin promoter. The body weight of transgenic mice was normal until approximately 10-12 weeks, and then increased 30-50% over wild-type littermates. Adult transgenic m...
متن کاملDeficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice.
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH i...
متن کاملEffect of carboxypeptidase E deficiency on progastrin processing and gastrin messenger ribonucleic acid expression in mice with the fat mutation.
Proforms of gastrointestinal peptides are cleaved at paired basic residues into intermediate forms. Paired basic residues at the C-terminal then are excised by carboxypeptidases before the peptide is amidated. An obese mouse, called Cpe(fat)/Cpe(fat), has a missense mutation in carboxypeptidase E (CPE) with no pancreatic CPE activity and a reduced processing of pancreatic proinsulin to insulin....
متن کاملRole of TNFR1 in the innate airway hyperresponsiveness of obese mice.
The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe(fat) mice that were either sufficient or genetically deficient in TNFR1 (Cpe(fat) and Cpe(fat)/TNFR1(-/-) mice) and in lean ...
متن کاملAltered processing of procholecystokinin in carboxypeptidase E-deficient fat mice: differential synthesis in neurons and endocrine cells.
The fat mouse strain exhibits a late-onset obesity syndrome associated with a mutation in the gene encoding carboxypeptidase E (CPE). CPE plays a central role in the biosynthesis of many regulatory peptides. Therefore, we examined the processing of procholecystokinin (proCCK) in the brain (neurons) and small intestine (endocrine cells) of fat/fat mice. In the brain, bioactive CCK was markedly r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 17 شماره
صفحات -
تاریخ انتشار 2001